Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Asia Pacific Allergy ; (4): 11-2020.
Article in English | WPRIM | ID: wpr-785454

ABSTRACT

Air pollution, climate change, and reduced biodiversity are major threats to human health with detrimental effects on a variety of chronic noncommunicable diseases in particular respiratory and cardiovascular diseases. The extent of air pollution both outdoor and indoor air pollution and climate change including global warming is increasing-to alarming proportions particularly in the developing world especially rapidly industrializing countries worldwide. In recent years, Asia has experienced rapid economic growth and a deteriorating environment and increase in allergic diseases to epidemic proportions. Air pollutant levels in many Asian countries especially in China and India are substantially higher than are those in developed countries. Moreover, industrial, traffic-related, and household biomass combustion, indoor pollutants from chemicals and tobacco are major sources of air pollutants, with increasing burden on respiratory allergies. Here we highlight the major components of outdoor and indoor air pollutants and their impacts on respiratory allergies associated with asthma and allergic rhinitis in the Asia-Pacific region. With Asia-Pacific comprising more than half of the world's population there is an urgent need to increase public awareness, highlight targets for interventions, public advocacy and a call to action to policy makers to implement policy changes towards reducing air pollution with interventions at a population-based level.


Subject(s)
Humans , Administrative Personnel , Air Pollutants , Air Pollution , Air Pollution, Indoor , Allergy and Immunology , Asia , Asian People , Asthma , Biodiversity , Biomass , Cardiovascular Diseases , China , Climate Change , Climate , Consumer Advocacy , Developed Countries , Economic Development , Family Characteristics , Global Warming , Hypersensitivity , India , Rhinitis, Allergic , Tobacco
2.
Allergy, Asthma & Immunology Research ; : 381-393, 2019.
Article in English | WPRIM | ID: wpr-739409

ABSTRACT

PURPOSE: Neutrophils are considered key effector cells in the pathogenic mechanisms of airway inflammation in asthma. This study assessed the activation status of neutrophils in adult asthmatics, and the therapeutic potential of FTY720, a synthetic sphingosine-1-phosphate analog, on activated neutrophils using an in vitro stimulation model. METHODS: We isolated peripheral blood neutrophils (PBNs) from 59 asthmatic patients (including 20 aspirin-exacerbated respiratory disease [AERD] and 39 aspirin-tolerant asthma [ATA] groups). PBNs were stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or lipopolysaccharide (LPS) and their activation status was determined based on reactive oxygen species (ROS) production, cell surface expression of CD11b, interleukin (IL)-8 and matrix metallopeptidase (MMP)-9 release. PBNs were primed with FTY720 to evaluate its anti-inflammatory action. RESULTS: In vitro PBN stimulation with fMLP or LPS induced a significant increase in ROS/CD11b/IL-8/MMP-9 levels (P < 0.05 for all). In asthmatics, fMLP-induced ROS level was significantly correlated with values of forced expiratory volume in 1 second/forced vital capacity (r = −0.278; P = 0.036), maximal mid-expiratory flow (r = −0.309; P = 0.019) and PC20 methacholine (r = −0.302; P = 0.029). In addition, ROS levels were significantly higher in patients with AERD and in those with severe asthma than in those with ATA or non-severe asthma (P < 0.05 for all). FTY720 treatment could suppress ROS/CD11b levels, and LPS-induced IL-8 and MMP-9 levels (P < 0.05 for all). Responders to FTY720 treatment had significantly higher neutrophil counts in sputum (P = 0.004). CONCLUSIONS: Our findings suggest a useful in vitro PBN stimulation model for evaluating the neutrophil functional status and the therapeutic potentials of neutrophil-targeting candidates in asthmatics.


Subject(s)
Adult , Humans , Asthma , Fingolimod Hydrochloride , Forced Expiratory Volume , In Vitro Techniques , Inflammation , Interleukin-8 , Interleukins , Methacholine Chloride , N-Formylmethionine Leucyl-Phenylalanine , Neutrophil Activation , Neutrophils , Phenotype , Reactive Oxygen Species , Sputum , Vital Capacity
3.
The Korean Journal of Internal Medicine ; : 375-385, 2016.
Article in English | WPRIM | ID: wpr-109560

ABSTRACT

BACKGROUND/AIMS: Role of autophagy in neutrophil function and the association of autophagy and autophagy related (ATG) gene polymorphisms with asthma susceptibility were suggested. In this study, we investigated the genetic association of ATG5 and ATG7 polymorphisms with asthma risk, severity and neutrophilic airway inflammation. METHODS: We recruited 408 asthma patients and 201 healthy controls. Sputum neutrophil counts were determined by H&E staining. Serum interleukin 8 (IL-8) levels were measured by enzyme-linked immunosorbent assay (ELISA). Genetic polymorphisms of ATG5 (-769T>C, -335G>A, and 8830C>T) and ATG7 (-100A>G and 25108G>C) were genotyped. The functional activities of ATG5 -769T>C and -335G>A variants were investigated by luciferase reporter assays. RESULTS: No associations of ATG5 and ATG7 polymorphisms with asthma susceptibility and severity were found. ATG5 -769T>C and -335G>A were in complete linkage disequilibrium. In the asthma group, GA/AA genotypes at ATG5 -335G>A were associated with higher neutrophil counts in sputum (p T associated with lower FEV1% predicted value (p G and 25108G>C were significantly associated with high serum levels of IL-8 (p < 0.05 for both variants). CONCLUSIONS: Genetic polymorphisms of ATG5 and ATG7 could contribute to neutrophilic airway inflammation in the pathogenesis of adult asthma.


Subject(s)
Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Asthma/blood , Autophagy/genetics , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 7/genetics , Case-Control Studies , Cell Line , Gene Frequency , Genes, Reporter , Genetic Predisposition to Disease , Haplotypes , Heterozygote , Homozygote , Interleukin-8/blood , Neutrophil Infiltration/genetics , Neutrophils/immunology , Phenotype , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Risk Factors , Severity of Illness Index , Transfection
4.
The Korean Journal of Internal Medicine ; : 417-432, 2016.
Article in English | WPRIM | ID: wpr-101305

ABSTRACT

Nonsteroidal anti-inf lammatory drugs (NSAIDs) are widely prescribed for the treatment of inflammatory diseases, but their use is frequently related to hypersensitivity reactions. This review outlines our current knowledge of NSAID hypersensitivity (NHS) with regard to its pathogenic, molecular, and genetic mechanisms, as well as diagnosis and treatment. The presentation of NHS varies from a local (skin and/or airways) reaction to systemic reactions, including anaphylaxis. At the molecular level, NHS reactions can be classified as cross-reactive (mediated by cyclooxygenase inhibition) or selective (specific activation of immunoglobulin E antibodies or T cells). Genetic polymorphisms and epigenetic factors have been shown to be closely associated with NHS, and may be useful as predictive markers. To diagnose NHS, inhalation or oral challenge tests are applied, with the exclusion of any cross-reactive NSAIDs. For patients diagnosed with NHS, absolute avoidance of NSAIDs/aspirin is essential, and pharmacological treatment, including biologics, is often used to control their respiratory and cutaneous symptoms. Finally, desensitization is recommended only for selected patients with NHS. However, further research is required to develop new diagnostic methods and more effective treatments against NHS.


Subject(s)
Humans , Anaphylaxis , Anti-Inflammatory Agents, Non-Steroidal , Antibodies , Biological Products , Diagnosis , Drug Hypersensitivity , Epigenomics , Genetic Predisposition to Disease , Hypersensitivity , Immunoglobulin E , Immunoglobulins , Inhalation , Polymorphism, Genetic , Prostaglandin-Endoperoxide Synthases
5.
Allergy, Asthma & Respiratory Disease ; : 264-270, 2016.
Article in Korean | WPRIM | ID: wpr-49809

ABSTRACT

PURPOSE: Toll-like receptor 3 (TLR3) recognizes to viral double-stranded RNA and is involved in antiviral defenses. A probable role of TLR3 gene variants in the pathogenesis of aspirin-intolerant asthma (AIA) has been suggested. AIA patients present more frequent asthma exacerbations in which respiratory viral infections could be an exacerbating factor. IgG subclass deficiency was commonly present with bronchial asthma. Based on previous findings, we investigated whether TLR3 variants could affect IgG3 subclass deficiency in AIA. METHODS: We enrolled 279 AIA patients, 403 aspirin-tolerant asthma (ATA) patients, and 315 normal healthy controls (NC) in this study. TLR3 polymorphism at the promoter region -299698G>T was genotyped. The serum levels of IgG subclasses were determined by the single radial immunodiffusion method. Expressions of IgG3 and TLR3 on Epstein-Barr virus transformed-B cells isolated from asthmatic patients were evaluated by flow cytometry to investigate B-cell functions. RESULTS: The TLR3 -299698 T allele was significantly associated with severity and IgG3 deficiency in the AIA group (P=0.044 and P=0.010, respectively), but not in the ATA group. IgG3 expression on B cells from asthmatics with IgG3 deficiency was significantly lower compared to those without (P=0.025). There was a positive correlation between IgG3 expression levels on B cells and serum IgG3 levels (r 2=0.434, P=0.002). CONCLUSION: These results suggest that the TLR3 -299698G>T polymorphism may be associated with IgG3 subclass deficiency and severity in AIA.


Subject(s)
Humans , Alleles , Asthma , B-Lymphocytes , Flow Cytometry , Herpesvirus 4, Human , Immunodiffusion , Immunoglobulin G , Methods , Polymorphism, Genetic , Promoter Regions, Genetic , RNA, Double-Stranded , Toll-Like Receptor 3
SELECTION OF CITATIONS
SEARCH DETAIL